Broadband Wireless Channel Measurements for High Speed Trains

Florian Kaltenberger, Auguste Byiringiro, George Arvanitakis, Riadh Ghaddab, Dominique Nussbaum, Raymond Knopp, Marion Bernineau, Yann Cocheril, Henri Philippe, Eric Simon
Motivation

- Achieving broadband communications at high speeds
 - LTE has been designed for up to 150Mbps and up to 500km/h, but realistic throughput is much lower (~20Mbps)

- LTE-Advanced increases throughput through
 - Higher order MIMO (8 antennas)
 - Carrier Aggregation (CA)

- However, fundamental problems remain
 - High Doppler causes inter-carrier interference (ICI)
 - High channel variation makes feedback difficult
 - Different propagation conditions at different carriers

- This work presents
 - High-speed (300km/h) channel measurement campaign
 - Combining MIMO and CA
 - Carried out in the French CORRIDOR project
Channel Sounding Campaign

- 3 LTE carriers
- 4 transmit antennas each
- Sounding signal
 - LTE-like (OFDM)
 - Pilots only

<table>
<thead>
<tr>
<th></th>
<th>5MHz</th>
<th>10MHz</th>
<th>20MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Rate (MSPS)</td>
<td>7.68</td>
<td>15.36</td>
<td>30.72</td>
</tr>
<tr>
<td>Symbol duration</td>
<td></td>
<td>66 μs</td>
<td></td>
</tr>
<tr>
<td>Prefix length</td>
<td></td>
<td>16 μs</td>
<td></td>
</tr>
<tr>
<td>Frame duration</td>
<td></td>
<td>10 ms (120 OFDM symbols)</td>
<td></td>
</tr>
<tr>
<td>OFDM size</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
</tr>
<tr>
<td>Useful carriers</td>
<td>300</td>
<td>600</td>
<td>1200</td>
</tr>
</tbody>
</table>
Measurement Equipment

- TX and RX built upon Eurecom’s ExpressMIMO2 cards
 - Each card provides either 4 x 5MHz, 2 x 10 MHz, or 1 x 20MHz
 - Multiple cards can be synchronized

- TX uses additional power amplifiers
 - 40dBm for 800MHz channel
 - 36dBm for 2.6GHz channel
Antennas

- **Base station**
 - 2 HUBER+SUHNER (2.6GHz)
 - 2 Kathrein (800MHz)
 - All sectorized & dual polarized

- **Train**
 - Sencity Rail Antennas from HUBER+SUHNER
 - 2 double-directional antennas at 2.6GHz (only one direction used)
 - 3 omni-directional antennas at 800MHz
Scenarios

- **Train: IRIS 320 TGV**
 - SNCF INFRA

- **Rail line: LGV Atlantique**
 - Southwest of Paris

Scenarios

1. **Operator type:** eNB 1.5km away from rail line
2. **LTE-R type A:** eNB next to railway line, antennas point both sides
3. **LTE-R type B:** eNB next to railway line, antennas point in same direction
Data acquisition and Post processing

- Recording raw IQ data
 - Continuously for 5MHz channel
 - 1/2 seconds for (10+20MHz) channel

- Timing synchronization and tracking

- Channel Estimation

- Delay Doppler Power Spectrum Estimation
 - One estimate per second \rightarrow 1Hz Doppler resolution
Path loss results

Path loss coefficient:
- 3.2 - 4.5

Mean
- 800MHz: 3.6
- 2.6GHz: 4
Delay Doppler Spectrum 800MHz Scenario 1
Doppler Profile 800MHz Trial 1 Run 1

- **Strong frequency offset**
 - Calibrated mostly in trial 2

- **Possible Model: (offset) Jakes + specular component**
 - Specular component corresponds well to geometry and speed of train
 - Hypothesis yet to be tested
Delay Doppler Spectrum 2.6GHz (Carrier 1) Scenario 2A
Second specular component when train is southwest of base station!
Model of scattering environment

- Strong local reflection from gantries along track
- Antenna main lobe pointing away from TX → LOS strongly attenuated
Conclusions and Future Work

- First measurement campaign on a high speed train combining MIMO and carrier aggregation
- Time-frequency analysis shows highly non-stationary behavior
- Antenna (port) selection very important to reduce Doppler effects
- Channel could be modeled as geometry based stochastic model
- Future work: spatial analysis (MIMO)
BACKUP
Motivation and Context

- **CORRIDOR project**
 - Cognitive Radio for Railway Through Dynamic and Opportunistic Spectrum Reuse
 - Nov 2011 - Apr 2015, funded by ANR
Huber&Suhner Sencity Rail Antenna 2.6GHz

Port 1

Port 2
Delay Doppler Spectrum 2.6GHz (Carrier 2) Scenario 2A